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A set of 40 phenothiazines, thioxanthenes, and structurally related drugs with multidrug
resistance modulating activity in tumor cells in vitro were selected from literature data and
subjected to three-dimensional quantitative structure-activity relationship study using
comparative molecular field analysis (CoMFA). More than 350 CoMFA models were derived
and evaluated using steric, electrostatic, and hydrophobic fields alone and in combination. Four
alignment strategies based on selected atom pairs or field fit alignment were compared. Several
training and test sets were analyzed for both neutral and protonated drug forms separately.
Each chemical class was trained and tested individually, and finally the classes were combined
together into integrated models. All models obtained were statistically significant and most
of them highly predictive. All fields contributed to MDR reversing activity, and hydrophobic
fields improved the correlative and predictive power of the models in all cases. The results
point to the role of hydrophobicity as a space-directed molecular property to explain differences
in anti-MDR activity of the drugs studied.

Introduction

Multidrug resistance (MDR) is a major obstacle to
successful treatment of metastatic cancers. It is a
broad-spectrum resistance to chemotherapy and several
mechanisms are proven to be involved in its acting.1
“Typical” or ”classical” MDR is associated with the
product ofMDR1 gene, the membrane integrated trans-
port protein P-glycoprotein (P-gp). P-gp is thought to
recognize a large variety of cytotoxic agents as sub-
strates for ATP-dependent efflux, thereby reducing their
intracellular accumulation.2 Simultaneously, a number
of drugs have been identified that are not cytotoxic by
themselves (calcium channel blockers, anti-arrhythmics,
antidepressants, antipsychotics and many others) but
can reverse P-gp-related MDR.3-5 These drugs, called
MDR reversing agents (modulators, chemosensitizers,
reverters), represent a wide range of chemical structures
and can exert different cellular effects; however, they
are supposed to act by the same mechanism for the
reversal of MDR. The most widespread concept pre-
sumes inhibition of P-gp activity by competition with
the cytotoxic agents for the same binding sites.6 Al-
though there is still considerable controversy about the
mechanism of action of the efflux pump, it is well
recognized that the MDR modulators share common
physicochemical features needed for the reversal: they
are amphipathic drugs and mostly protonated.2 Our
previous investigations on membrane activity of some
catamphiphilic MDR reverters (phenothiazines, thio-
xanthenes, and structurally related drugs) suggest that
these common features relate directly to the ability of

the chemosensitizers to interact with the membrane
phospholipids.7 Recent studies on photoaffinity label
sites and point mutations of P-gp revealed that the parts
of the protein that affect its transport specificity belong
mainly to amino acid sequences located in the mem-
brane.2 It was also shown that potent MDRmodulators
inhibit the membrane binding of rhodamine-G6 even in
the absence of any P-gp or other proteins.8 These
findings point to mechanisms of MDR reversal mediated
by drug-membrane interactions.
Conformational and molecular modeling studies of

phenothiazines, thioxanthenes, and similar drugs re-
ported so far are mostly related to their anti-calmod-
uline,9 anti-dopamine,10-13 and antitumor activity.14
Whereas a good correlation between anti-calmoduline
and antiproliferative activity has been reported, no
correlation between anti-calmoduline and MDR modu-
lating activity has been observed for these drugs.15
Pearce and co-workers compared the conformations of
some reserpine and yohimbine analogues to that of the
powerful MDR modulator verapamil, as well as of
chlorpromazine and chloroquine, and concluded that the
relative disposition of aromatic rings and basic nitrogen
was important for their anti-MDR activity in vinblastine
resistant human leukemia cells.16 They postulated the
existence of a conserved structural element for binding
to the putative MDR receptor associating it with P-gp.
Recently, we performed a QSAR study of a number

of phenothiazines, thioxanthenes, and structurally re-
lated drugs that are known to reverse MDR in vitro in
different resistant tumor cell lines.15,17-19 We identified
and quantitatively estimated several structural features
of significant importance for their anti-MDR activity.20
To decide on possible space property differences related
to anti-MDR activity, we performed as well a confor-
mational and molecular modeling study of two powerful
revertersstrans- and cis-flupentixol.20,21 We suggested
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that the 2-3-fold difference in their MDR reversing
activity might be due to differences in their lipophilic
and electrostatic fields causing different orientations of
the molecules in the membrane lipid environment.
Thus, despite the common physicochemical “rules”
proposed, it is likely that modulators of P-gp MDR also
possess some specific structural determinants that
remain to be established.
In this paper we report a 3D QSAR study of 40 MDR

modulators from classes of phenothiazines, thioxan-
thenes, and structurally related drugs by the CoMFA
approach. It is based on our previous results on
membrane interactions, QSAR and molecular modeling
studies of some of these compounds.7,20,21 Considering
hydrophobic interactions to represent an essential part
of the drug-membrane interaction, hydrophobic fields
were also included as possible descriptors of molecular
recognition capabilities22 in addition to the standard
CoMFA Lennard-Jones and Coulomb-type potentials. As
shown in the study, hydrophobicity contributes signifi-
cantly to the CoMFA correlative, predictive, and inter-
pretative power in most cases. The main goal of the
study was to obtain 3D QSAR models of good statistical
predictivity and possibly more information about the
drugs’ specific properties associated with MDR reversal.
To the best of our knowledge this is the first attempt to
derive 3D QSAR models of MDR reverters using CoM-
FA.

Results and Discussion

Cytotoxicity andMDRReversing Activity. Table
1 lists the names, structures, and observed MDR
reversing activity values (MDR ratios) of the drugs used
in the study.
A plot of MDR ratio versus IC50 for cell growth

inhibition of the drugs is presented in Figure 1. In the
figure, logarithmic values for both MDR ratio and IC50
were used, and the inverse of IC50 was taken to obtain
higher cytotoxicity values for the more active MDR
modifiers. The plot confirms the reported observation
of Ford et al.15 on some of these drugs about the lack of
correlation between drugs’ own cytotoxic and MDR
reversing activities. As can be seen from the figure, no
dependence between chemosensitizing activity and the
direct antiproliferative effect for all 40 drugs can be
outlined. This points out different mechanisms of
cytotoxicity and MDR reversal of the compounds under
investigation.
CoMFA-Related Parameters. In CoMFA there are

a number of prerequisites and parameters that can be
set by the user so as to influence the final results.
The alignment of the molecules is one of the most

important criteria determining the quality of the 3D-
QSAR models and can greatly affect the outcome of the
analysis. In this study two types of alignment were
used and compared, provisionally called skeleton and
shape. The skeleton alignment is based on the skeleton
of the tricyclic ring system and is achieved by fitting
the corresponding non-hydrogen atoms of the three
rings. Shape alignment is based on the previously
proposed pharmacophoric scheme derived from the
QSAR free-Wilson analysis and molecular modeling.20,21
It is achieved by fitting the centroids of the two aromatic
moieties in the tricyclic ring system and the first basic

nitrogen in the aliphatic chain (Figure 2). According
to this alignment the ring systems of the target and
template molecules can be oriented equally (Figure 2a)
or mirror-like (Figure 2b) in relation to the substituent
on the second position of the ring system to yield the
lowest rms values. Additionally, the CoMFA field fit
alignment technique was applied to each alignment
separately, leading to a total of four alignments for both
the neutral and protonated drugs.
To avoid chance correlations, several training and test

data sets were created and evaluated (Table 1): (1)
training on 17 phenothiazines (numbers 1-17) and test
on 9 drugs (numbers 18-21, 36-40); (2) training on 21
phenothiazines (numbers1-21) and test on 16 thioxan-
thenes and related drugs (numbers 22-40); (3) training
on 16 thioxanthenes (numbers 22-36) and test on 21
phenothiazines and related drugs (numbers 1-21, 38-
40); (4) training on 37 phenothiazines and thioxanthenes
(numbers 1-37); (5) training on all 40 compounds.
To decide on the most relevant CoMFA parameters

to be set in the study, preliminary investigations on the
influence of the CoMFA field type and threshold column
filtering (σmin or field variance at each grid point) on
the statistical parameters of the models were under-
taken using the skeleton aligned training set of 17
phenotiazines (numbers 1-17, Table 1). The corre-
sponding results are presented in Table 2. At 30 kcal/
mol energy field cutoff and σmin ) 0, the best Q2

cv )
0.879 was obtained for the CoMFA B field. It should
be stated that this field combines both the steric and
electrostatic interaction energies; however, as can be
seen from Table 2, Q2

cv and the contributions of the
steric and electrostatic fields differ from that of the
combination of S & E fields taken separately. [This is
due to the fact that, in the SYBYL CoMFA implementa-
tion, in case of the B field, the electrostatic field is
assigned a missing value inside atoms and is therefore
fully ignored at those points while, in case of the
electrostatic field calculated separately, it is set to the
selected cutoff value (positive or negative) inside atoms
and subsequently taken into account in the PLS analy-
sis. The other CoMFA fields also showed high Q2

cv. A
decrease in Q2

cv by 0.11 was observed when B fields
were used, increasing σmin from 0 to 2 kcal/mol (Table
2). Although it is thought that the signal-to-noise ratio
improves at higher σmin, Q2

cv decreased by more than
10%, setting σmin to 2 kcal/mol. At σmin ) 0.2 kcal/mol,
the computational time was about 2 times lower in
comparison to σmin ) 0 while the decrease in Q2

cv was
negligible. Thus, σmin ) 0.2 kcal/mol was set in all
further calculations as the threshold column filtering
value.
As each field individually yielded an acceptable model,

in all further calculations the different fields were
systematically explored alone and in combination in
order to identify those of them that yield the best
models. The comparison of different models was used
for lateral validation.
CoMFA Models of Phenothiazines. The first

CoMFA models were derived using the training set of
17 skeleton aligned phenotiazines (Table 1, numbers
1-17). This data set was used as a probe training set
because of several reasons as explained below. The
structural features that are generally considered as
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Table 1. Structures and MDR Reversing Activities of Phenothiazines, Thioxanthenes and Structurally Related Drugs Investigated
in This Study
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physicochemical features shared by P-gp-related MDR
modulators are “aromatic ring systems, secondary or
tertiary nitrogen atom disposed within an extended side
chain and hydrophobicity”.23 Our QSAR study on
phenothiazines, thioxanthenes, and related drugs20
substantiated several structural features of significant
importance for anti-MDR activity: the tricyclic ring
system and the substituent in position 2, the length of
the spacer between the ring system and the first basic
nitrogen in the aliphatic chain, the type of the basic
nitrogen, and stereoisomery. The training set under

investigation is characterized by small structural varia-
tion as only the substituents on the tricyclic ring system
and the nitrogen vary while the type of ring system and
length of the spacer (three methylene groups) remain
constant. This allows the estimation of the influence
of the substituents on the tricyclic ring system and the
substitution pattern of the nitrogen.
The results are summarized in Table 3. The models

with the highestQ2
cv were obtained by combining H and

CoMFA steric (SH model) and both fields (BH model).
Furthermore, the models B, SH, and BH were recalcu-
lated at numbers of components lower than Nopt, and
the change in SEPcv, was followed. The decrease in the
number of components lead to a slight decrease in Q2

cv
and up to 14% decrease in SEPcv. The respective non-
cross-validated models were then derived and the test
set prediction done with them.
Nine compounds of very different structure compared

to the training set were used to test the models
obtained: three phenothiazines with modified length of
the spacer (numbers 18-20, Table 1), one sulfoxide
phenothiazine (number 21), two highly potent thioxan-
thenes (numbers 36 and 37), and three structurally
related drugs (numbers 38-40). Their difference in
MDR fold reversal was about 10-fold, being 1.182 in log
units for the most active trans-flupentixol (number37)
and 0.182 for the least active 2-chloro-10-[2-(dimethy-
lamino)ethyl]phenothiazine (number 18), thus exceeding
significantly the activity range of the training set
(-0.097 to 0.531).
The above test set can be considered as a very hard

one as the presence of the structural fragments not
encountered in the training set and the large difference
in the activity range of the training and test set
compounds can lead to wrong predictions by any CoMFA
model. According to Q2

pr, neither of the models tested
could be considered as really successful; however, all
Q2

pr were positive (about 0.3), and a relatively good fit
(R2 about 0.6-0.8) of actual versus predicted activities
of the tested molecules was observed. (See Table 6 of
Supporting Information.) Interestingly, the highest test
Q2

pr and R2 were obtained for the BH model (0.350 and
0.793, respectively), although the SH one showed the
highest Q2

cv. In Figure 3 a plot of the predicted versus
actual MDR ratios of the test compounds derived from
the BHmodel is presented. As seen from the figure the
activities of all test compounds with the exception of
quinacrine are underpredicted. Figure 4 shows the
residuals of the MDR ratios depending on the data
outside the range of the training CoMFA fields for the
compounds tested. All tested drugs were novel to some

Figure 1. Chemosensitizing (MDR ratio) versus antiprolif-
erative effect (IC50 for inhibition of cell growth) of the modifiers
studied in 200-fold doxorubicin resistant MCF-7/DOX cells.15,17

Figure 2. Shape alignment by the centroids of the two
aromatic rings and the first basic nitrogen in the aliphatic
chain (balls); template molecule, trans-flupentixol; alignment
technique, rms fitting: A, similar oriented ring systems, target
molecule trifluoperazine; B, mirror-like oriented ring systems,
target molecule chlorpromazine.

Table 2. Influence of the Standard CoMFA Energetic Fields
and Threshold Column Filtering, σmin, on the Statistical
Parameters of the CoMFA Models on Phenothiazines (Numbers
1-17, Table 1)

CoMFA
field

field cutoff,
kcal/mol

σmin,
kcal/mol Q2

cv Nopt

contribution
S/E, %

E 30 0.0 0.750 6 0/100
S 30 0.0 0.853 6 100/0
S & E 30 0.0 0.868 6 49/51
B 30 0.0 0.879 6 64/36
B 30 0.05 0.876 7 66/34
B 30 0.10 0.875 7 67/33
B 30 0.20 0.874 7 67/33
B 30 0.30 0.873 7 72/28
B 30 0.50 0.874 7 67/33
B 30 0.75 0.863 6 65/35
B 30 1.00 0.853 5 58/42
B 30 1.50 0.863 6 65/35
B 30 2.00 0.769 7 57/43

Table 3. Comparison of CoMFA Models on Phenothiazines
(Numbers 1-17, Table 1)

field contribution, %

model Q2
cv Nopt SEPcv S E H

E 0.750 6 0.113 100
S 0.853 6 0.086 100
S E 0.870 6 0.081 55 45
B 0.874 7 0.084 67 33
H 0.664 13 0.238 100
S H 0.929 9 0.072 60 40
E H 0.823 6 0.095 60 40
B H 0.912 7 0.070 50 19 31
B Q2-GRS 0.883 6 0.077 62 38
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extent in relation to the drugs used for training. trans-
and cis-flupentixol, 2-chlorimipramine, and quinacrine
(numbers36, 37, 39, 40) were of the highest novelty (data
out of range above 30%), and the thioxanthenes pos-
sessed the largest residuals as well. These results show
that, in addition to the commonly recognized structural
features of the MDR modulators, new structural motifs
have to be included in the training set in order to
improve the predictivity of the models.
Q2-GRS CoMFA Models of Phenothiazines. The

results of application of Q2-GRS routine to the phe-
nothiazine probe training set are also presented in Table
3 (B-Q2-GRS model). Comparing Q2

cv of the model to
the standard CoMFA B model, only a slight increase in
Q2

cv and decrease in SEPcv was observed indicating good
reproducibility of the reported models. The master
region file created by the routine shows that only the
peripheral boxes are missing (Figure 5). Considering
the selected subregions to contain information of im-
portance for the differences in activity, one can speculate
on a possible involvement of the whole structures of the
investigated drugs in interactions related to MDR
reversal.
The test results of the B-Q2-GRS model were slightly

lower than those of the standard CoMFA B model, and
the novelty of the tested compounds changed also
(Figure 6). As about one-third of the boxes were deleted

as a result of the routine (43 of 125 subregions, Figure
6), points related to the test structures were also
deleted, influencing in this way their novelty (the
novelty is expressed as percent of the data of the tested
drug outside the range of the training set drugs). The
residuals of some drugs with the highest novelty in-
creased (number 36-39, Figure 6), suggesting that
lattice points contributing to the correct prediction of

Figure 3. MDR ratios of the test compounds predicted by
model BH with three components (Table 3) versus observed
values; the numbered points correspond to the numbers of the
compounds as assigned in Table 1.

Figure 4. Data outside range (novelty) of the compounds in
the test set versus residuals of the MDR ratios predicted by
model BH (Table 3).

Figure 5. Master region file of B-Q2-GRS model (Table 3)
showing the overlaid structures of the training compounds and
the selected 82 of 125 subregions.

Figure 6. Data outside range (novelty) of the compounds in
the test set versus residuals of the MDR ratios predicted by
models B and B-Q2-GRS (Table 3).
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these structures were lost as a result of the Q2-GRS
application.
CoMFA Models of Phenothiazines, Thioxan-

thenes, and Related Drugs. The results of the above
probe set study pointed to the necessity of developing
CoMFA models from a more representative training set
with a larger structural variation. Therefore, we per-
formed training on different sets including new phe-
nothiazines, thioxanthenes, and related drugs. The
three best models of each training are presented in
Tables 4 and 5 for skeleton and shape alignments,

respectively. (Detailed information about all models
obtained is available in Tables 4 and 5 of the Supporting
Information.) In the tables the following codes are used
for model designations: P, phenothiazines only; T,
thioxanthenes only; PT, phenothiazines and thioxan-
thenes together; and A, all compounds, i.e., phenothi-
azines, thioxanthenes, and related drugs together; n,
neutral drug forms; p, protonated drug forms. The
compounds used in the training sets are given by
numbers as assigned in Table 1. Each molecular field
(S, E, H, Ho, B) was tried alone and in combination with

Table 4. CoMFA Models Derived from Training Sets of Phenothiazines, Thioxanthenes, and Related Drugs: Skeleton Alignmenta

database alignment field fit alignment

training set drug form modelb field Q2
cv SEPcv model field Q2

cv SEPcv

phenothiazines, P; numbers 1-21 neutral, n Pn 6 S H 0.765 0.091 Pn 14 H 0.751 0.098
8 E H 0.753 0.097 19 E H 0.776 0.089
10 B H 0.769 0.091 21 B H 0.725 0.096

protonated, p Pp 4 Ho 0.726 0.115 Pp 15 Ho 0.540 0.124
6 S H 0.639 0.117 17 S H 0.544 0.123
10 B Ho 0.622 0.170 18 S Ho 0.551 0.122

thioxanthenes, T; numbers, 22-37 neutral, n Tn 4 Ho 0.769 0.210 Tn 14 H 0.518 0.350
6 S H 0.624 0.268 15 Ho 0.734 0.226
7 S Ho 0.616 0.260 18 S Ho 0.492 0.311

protonated, p Tp 2 E 0.677 0.259 Tp 14 H 0.719 0.232
4 Ho 0.702 0.238 15 Ho 0.724 0.281
9 E Ho 0.698 0.251 19 E H 0.694 0.252

phenothiazines and thioxanthenes, neutral, n PTn 3 H 0.784 0.176 PTn 15 Ho 0.771 0.181
PT; numbers 1-37 4 Ho 0.845 0.154 18 S Ho 0.713 0.206

6 S H 0.766 0.183 20 E Ho 0.702 0.207
protonated, p PTp 4 Ho 0.814 0.175 PTp 14 H 0.670 0.233

6 S H 0.778 0.176 15 Ho 0.778 0.195
10 B H 0.781 0.175 20 E Ho 0.671 0.228

phenothiazines, thioxanthenes, neutral, n An 3 H 0.767 0.175 An 15 Ho 0.745 0.188
and related drugs, A; numbers 1-40 4 Ho 0.816 0.158 18 S Ho 0.712 0.195

9 E Ho 0.777 0.169 22 B Ho 0.692 0.198
protonated, p Ap 4 Ho 0.771 0.191 Ap 14 H 0.679 0.218

6 S H 0.762 0.174 15 Ho 0.793 0.181
10 B H 0.766 0.175 21 B H 0.672 0.202

a Only the three models with the highest Q2
cv in their sets are presented. b The numbering of the models obtained with the different

fields and their combinations is as follows: 1, S; 2, E; 3, H; 4, Ho; 5, B; 6, S H; 7, S Ho; 8, E H; 9, E Ho; 10, B H; 11, B Ho. In case of field
fit alignment 11 is added.

Table 5. CoMFA Models Derived from Training Sets of Phenothiazines, Thioxanthenes and Related Drugs: Shape Alignmenta

RMS fitting field fit alignment

training set drug form modela field Q2
cv SEPcv model field Q2

cv SEPcv

phenothiazines, P; numbers 1-21 neutral, n Pn 2 E 0.675 0.116 Pn 17 S H 0.629 0.134
8 E H 0.693 0.108 18 S Ho 0.580 0.143
9 E Ho 0.643 0.121 21 B H 0.620 0.113

protonated, p Pp 6 S H 0.608 0.127 Pp 12 S 0.564 0.117
7 S Ho 0.503 0.143 Pp 14 H 0.550 0.127
10 B H 0.586 0.130 16 B 0.583 0.114

thioxanthenes, T; numbers 22-37 neutral, n Tn 3 H 0.789 0.201 Tn 14 H 0.646 0.285
6 S H 0.792 0.199 15 Ho 0.708 0.246
7 S Ho 0.799 0.196 20 E Ho 0.603 0.287

protonated, p Tp 3 H 0.625 0.267 Tp 17 S H 0.614 0.261
6 S H 0.669 0.252 19 E H 0.593 0.268
10 B H 0.649 0.259 21 B H 0.633 0.254

phenothiazines and thioxanthenes, neutral, n PTn 1 S 0.837 0.153 PTn 14 H 0.790 0.171
PT; numbers 1-37 6 S H 0.845 0.147 15 Ho 0.820 0.163

7 S Ho 0.847 0.146 20 E Ho 0.797 0.173
protonated, p PTp 6 S H 0.802 0.166 PTp 17 S H 0.772 0.178

7 S Ho 0.788 0.172 21 B H 0.777 0.176
10 B Ho 0.791 0.171 22 B Ho 0.747 0.191

phenothiazines, thioxanthenes, neutral, n An 6 S H 0.832 0.146 An 15 Ho 0.790 0.169
and related drugs, A; numbers 1-40 7 S Ho 0.837 0.144 17 S H 0.780 0.170

11 B Ho 0.824 0.150 20 E Ho 0.788 0.172
protonated, p Ap 6 S H 0.796 0.162 Ap 14 H 0.751 0.184

7 S Ho 0.782 0.167 17 S H 0.767 0.172
10 B H 0.786 0.168 21 B H 0.767 0.173

a Only the three models with the highest q2cv in their sets are presented. a The numbering of the models obtained with the different
fields and their combinations is as follows: 1, S; 2, E; 3, H; 4, Ho; 5, B; 6, S H; 7, S Ho; 8, E H; 9, E Ho; 10, B H; 11, B Ho. In case of field
fit alignment, 11 is added.
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other fields in a stepwise strategy and the respective
cross-validated parameters of the obtained models were
recorded. Table 4 represents the results of the database
and field fit and Table 5 the results of the rms fitting
and field fit alignment techniques.
As seen from the tables, in almost all cases the

highest Q2
cv models include a hydrophobic field in both

modifications: hydrophobic/polar (H) and hydrophobic
only (Ho). Most of the best models from skeleton
alignment contain Ho field, while for shape alignment,
both H and Ho alone and in combination mainly with S
field yielded the highest cross-validated predictions. No
definitive preference can be given to either of both
hydrophobic fields. The H field gives a slightly higher
Q2

cv for the models derived from the protonated forms
and Ho for the neutral forms of the drugs. This
observation makes sense as, in the H field, hydrophobic
and polar interactions are coded, the latter ones more
expressed in the protonated forms. The contribution of
the hydrophobic fields, whether H or Ho, when com-
bined with the S field is between 30 and 40% in most
cases. In general, the shape models showed a Q2

cv
higher than the skeleton ones, especially when thio-
xanthenes were included in the training. Being stere-
oisomers, thioxanthenes can have two different shapes
depending on the direction of the aliphatic chain toward
the second position substituent in the ring systemsin
the same direction as (cis forms) or opposite to (trans
form) the substituent. Shape alignment suggests a
similarity in the molecular shapes that answers the
observation of the stereodependent manner of MDR
reversal by these drugs17 and the stereodependent
manner of their interaction with membrane phospho-
lipids.7

In general, the Q2
cv of the neutral forms are higher

than that of the protonated ones although the drugs are
mostly protonated at physiological pH. An explanation
of this observation might be addressed to the long range
electrostatic interactions that obscure small differences
in the atomic charges of the different substituents. As
a result the electrostatic field becomes flattened and the
local electrostatic information is lost. Another reason
may be related to a possibly imperfect parametrization
of the hydrophobic constants for protonated nitrogen in
the HINT fields.
To decide on the best alignment rule, both techniques

proposed until nowsthe classic fit of selected atom pairs
(database alignment and rms fitting) and field fit
alignmentswere studied. Field fit alignment is con-
sidered to be more “relaxed” in comparison with atom
pairs fit techniques. It is based on fitting the steric and/
or electrostatic fields of the template and target mol-
ecules by global rotation/translation in order to mini-
mize the differences between the fields of both molecules.
If the aligned molecules are focused to share a common
global shape and location in the 3D lattice, the entropic
contributions to the free energy are expected to be
minimized.24 Thus, one can expect better prediction
using field fit alignment. The results of the different
alignment techniques are given in Tables 4 and 5,
respectively. As can be seen from the tables, in general
the highest Q2

cv of the field fit alignment are lower than
those obtained by the classic fit of selected atom pairs.
However, a more detailed comparison of Q2

cv and Nopt

for the same field and drug form in the same training
set shows that no general rule can be outlined: in some
models the field fit alignment gives higher, in others
lower, and in others similar Q2

cv. In the global models
(PT and A) the field fit Q2

cv values are higher than in
the models of the single classes and comparable to those
of the classic fit models. The results demonstrate that
in this particular case the field fit alignment does not
improve the CoMFA models. However, the results are
close to that of the other alignment techniques and show
the adequacy and applicability of the used alignment
rules to the investigated problem.
Each chemical class individually yielded acceptable

models, and their combination into one training set gave
higher Q2

cv values for both alignments (models PT and
A in Tables 4 and 5). Figure 7 shows a plot of observed
versus predicted MDR ratios for all 40 drugs used in
the study by the integrated model An7 (Table 5). Cross-
validated Q2

cv is very close to R2 from the non-cross-
validated analysis (0.837 and 0.902, respectively), il-
lustrating the stability of the obtained model. The
improvement of the integrated model over the single
class models demonstrates a better representativeness
of the integrated training set for the activity investi-
gated and indirectly confirms the suggestion of a com-
mon mechanism of MDR overcoming and common
interaction sites of the drugs studied.
The best single class models were used to predict the

activity of compounds from the other classes. The Q2
pr

values were highest for predictions of phenothiazines
and related drugs from thioxanthene-derived models,
partly coming close to R2 obtained for the training sets.
[The statistics of the non-cross-validated runs and the
results of the test of the best single class models on the
prediction of compound activities for the other classes
are available as Supporting Information (Table 7).] In
Figure 8 a plot of the observed MDR ratios of phenothi-
azines versus that predicted by the thioxanthene-
trained model (Tp6, Table 5) is shown. As seen from
the figure the most deviating compounds are numbers
18 and 20. These drugs possess structural fragments
not included in the training set of thioxanthenessa
shorter spacer between the ring system and the basic
nitrogen in the aliphatic chain (see Table 1). Removing
them from the test set improves the fit significantly (R2

) 0.752, data not shown), illustrating again the limita-

Figure 7. MDR ratios of all 40 drugs predicted by the
integrated model An7 (Table 5) versus observed values.
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tion of all models on predicting the influence of struc-
tural motifs not presented in the training set. According
to Q2

pr the thioxanthene-based models show the best
prediction results in both alignments, once again shape
being better (from 0.87 to 0.90) than skeleton (from 0.54
to 0.90). However no correlation between Q2

pr and test
R2 can be outlined. Despite the high Q2

pr, R2 is much
lower (0.40-0.68) in most cases due mainly to the large
difference in the mean activity values of the training
and the test set. As described in the Experimental
Section, Q2

pr is related to the explained variance based
on the mean activity value of the training set com-
pounds, while R2 uses the mean activity value of the
test set compounds for the evaluation of the observed
variance. Thus, comparable Q2

pr and R2 are possible if
the mean values of both training and test sets are also
comparable. Another reason may be the greater con-
formational flexibility of the phenothiazine aliphatic
chain and, respectively, larger uncertainty in the defini-
tion of the relevantly active conformations in this class.
Indeed, shape alignment of phenothiazines gave higher
Q2

pr (0.36 to 0.49) than the skeleton one (0.14-0.30).
As explained above, shape alignment considers the
relative disposition of the ring system and N-substituted
moiety in the aliphatic chain. In the thioxanthene class,
for the reason of stereoisomery, the conformation flex-
ibility of the aliphatic chain between the ring and the
basic nitrogen is more limited and, correspondingly, the
alignment less variable.
Figure 9 represents the graphical results of the

integrated models for neutral and protonated drug
forms with the superimposed structures displayed.
CoMFA contour plots based on the non-cross-validated
BH and BHomodels for the neutral and protonated drug
forms obtained by the training with all studied com-
pounds (A coded models, Table 5) are shown. In the
graphics, the colored regions correspond to the differ-
ences in the fields that are most highly associated with
the differences in the investigated activity. On inter-
preting the graphical results, one should consider that
they reflect the structural variation of the data set, on
one hand, and regions of possible importance for the
MDR reversal, on the other.
Sterically important regions for the neutral and

protonated drugs are presented in Figure 9, parts A and

B, respectively. As seen from the graphics, there are a
number of small sterically forbidden regions (yellow)
around the ring system which, in our opinion, can be
considered as artifacts due to the alignment used, that
maximize the overall shape similarity of the molecules
in space. The real observations are the sterically
forbidden region in proximity of the spacer between the
ring system and the basic nitrogen and the favorable
region (green) in the aliphatic chain distant from the
basic nitrogen. In fact, the forbidden region is occupied
by substances of low activity with shorter or branched
spacers, and the favorable steric region in the aliphatic
chain corresponds to highly active drugs with bulky
substituents in this moiety.
As expected the electrostatic contours for neutral

(Figure 9C) and protonated (Figure 9D) drugs show
some differences. No contributing signal in the aliphatic
chain can be seen for the neutral forms, whereas the
protonated forms have a region of lower electron density
(in blue) around the basic nitrogen. The latter suggests
involvement of the protonated nitrogen in the interac-
tions related to the activity. In both graphics, the large
blue areas in the upper part of the ring system are
overlapped with smaller red ones (where more electron
density would increase activity), complicating in this
way the interpretation of the ring substituent influence.
As in the steric fields, this may result from the different
orientation of the ring system and, respectively its
substituents in shape alignment. However, signals
related to the second position substituents were not
identified in either of the drug forms, suggesting that
the electrostatic properties at this position are not
related to anti-MDR activity.
Parts E and F of Figure 9 represent the contour plots

of hydrophobic/polar (H), and parts G and H are plots
of hydrophobic only (Ho) fields. The red regions can be
interpreted as areas where more hydrophobicity pro-
motes favorable interactions, and blue ones where
hydrobicity discourages them. Obviously, depending on
the field and drug forms, the regions contributing to the
activity are different. As seen from Figure 9G, hydro-
phobic/hydrophobic interactions along the whole molec-
ular surface increase anti-MDR activity of the neutral
drugs, whereas the favorable hydrophobic signal is
located only in the vicinity of the ring system in the
protonated forms (Figure 9H). In the case of the
hydrophobic/polar interactions, a well-defined blue sig-
nal near the basic nitrogen indicates the positive influ-
ence of less lipophilic substituents on the activity of the
protonated forms (Figure 9E).
The above results point to hydrophobicity as a mo-

lecular property that strongly contributes to the differ-
ences in MDR reversal effect of the drugs studied. It
was postulated, based on log P values, that the degree
of lipophilicity of phenothiazines, although important,
is not the sole determinant of potency for their anti-
MDR activity.15 Our results suggest that when hydro-
phobicity is considered as a space directed molecular
property, it can self-dependently predict anti-MDR
activity of the studied drugs by a number of models and
significantly improve the 3D QSAR models based on
other fields. It appears that the standard CoMFA steric
and electrostatic fields cannot fully describe the main
forces driving the drug when reversing MDR and that

Figure 8. MDR ratios of 21 phenothiazines (numbers 1-21,
Table 1) predicted by model Tp6 derived from thioxanthenes
(Table 5) versus observed values.
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Figure 9. Graphical results with the superimposed structures displayed: (A, B) neutral and protonated steric B fields as derived from An10 and Ap10 models respectively; (C, D)
neutral and protonated electrostatic B fields as derived from models An10 and Ap10, respectively; (E, F) neutral and protonated hydrophobic/polar fields as derived from models
An10 and Ap10, respectively; (G, H) neutral and protonated hydrophobic only fields as derived from models An11 and Ap11, respectively. The plots are created using the
“contribution*std.dev” countor mapping option, and the same percent (20 and 80) was used for all fields.
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the anti-MDR effect of the studied compounds may
predominantly be governed by hydrophobic forces. In-
deed, when it penetrates into the membrane, the am-
phiphilic molecule aims to adopt a maximum hydropho-
bic surface, and the same might be true when interacting
with hydrophobic areas at the protein binding site. The
sites of action of phenothiazines and related drugs for
reversal of MDR are not still identified. On the basis
of the models obtained, nothing definitive can be said
about the putative MDR reversal “receptor”, be it a
membrane phospholipid or a transport protein. As good
models were obtained on the basis of data of drug
conformations in a lipid environment, the results point
to the involvement of drug-membrane interactions in
MDR overcoming and do not reject the possibility of a
direct interaction of the drugs with P-gp. Moreover,
MDR-reversing compounds may be recognized by P-gp
within the membrane, and consequently the transmem-
brane domains of P-gp may be initially involved in the
interaction of the different substrates with the protein.
Thus, it might prove to be that both membrane compo-
nents (proteins and phospholipids) relate to MDR
reversal “receptors”, and to exert anti-MDR activity, the
modulators have to meet the structural requirements
of both the transport protein and the phospholipids
surrounding it. New modeling studies are currently in
progress on identification of structural features of
different classes of modulators to obtain more informa-
tion about MDR reversal receptor or receptors.

Conclusions

In general, there are two main questions one faces
when applying CoMFA. The first question relates to
the statistical predictivity of the obtained models and
the second one to their interpretability in terms of the
physicochemistry of the investigated drug-ligand in-
teraction.
In the present study more than 350 CoMFA models

were derived using different molecular fields and dif-
ferent training sets. All models obtained were statisti-
cally significant and mostly highly predictive. CoMFA
parameters that could influence the 3D correlations
were investigated in order to minimize the possibility
of chance correlations. The neutral and monoproto-
nated forms were studied to get an idea about the
property differences depending on charge distribution.
In parallel with the standard CoMFA steric and elec-
trostatic fields the hydrophobic fields, were also inves-
tigated in order to find the best underlying activity
relationships. In fact, the best correlations were found
with these fields, which shows the role of hydrophobicity
for the investigated anti-MDR activity. The analysis
of the graphical results from the models revealed that,
in parallel with the commonly recognized critical sites
(polycyclic ring system and N-substituted moiety), the
molecular profile of hydrophobicity is a specific struc-
tural determinant for anti-MDR activity of the these
drugs. Little research has been done on using lipophilic
fields in CoMFA models, and in most cases, the inter-
pretation of these fields is rather difficult as hydropho-
bicity is thought to be not really understood until now.
In this particular case, however, where drug-mem-
brane interactions are supposed to mediate the reversal
of MDR, hydrophobicity is expected to play an essential

role. The results confirm the suggestion of membrane-
mediated mechanisms of MDR modulation. As shown
above, the models based on the flupentixol geometries
corresponding to those in the membrane lipid environ-
ment showed the best prediction of the test compounds.
Thus, the models obtained appear to possess both
statistical and physicochemical meaning, and their
interpretation appears to be sensible based on realistic
geometries of the investigated drugs. They can suc-
cessfully be used for examining different structural
moieties and their functionalities on MDR reversal to
find new and more effective MDR modulators.

Experimental Section

Drugs and MDR Reversing Activity. The data used in
the study are summarized from papers of Ford et al.15,17 The
sources of the compounds studied by Ford et al. are as
follows: numbers 1-5, 9, 10, 14, 15, 18, 19, and 21 donated
by Dr. Charles Zirkle of Smith Kline and French Laboratories
(Philadelphia, PA); numbers 6, 8, 11, and 12 by Dr. Albert
Manian of the National Institute of Mental Health (Bethesda,
MD); number 20 by Wyeth Laboratories (Radnor, PA); number
13 by Rhone-Poulenc (Paris, France); numbers 38 and 39 by
Geigy Pharmaceuticals (Summit, NJ); number 40 by Sterling-
Winthrop Research Institute (Renssalear, NY); number 17 by
Dr. S. J. Lucania of E. R. Squibb and Sons; the thioxanthene
derivatives (numbers 22-37) by Dr. John Hyttel of H. Lund-
beck (Copenhagen, Denmark); number 16 was obtained from
Sigma.
MDR reversing activity in vitro in doxorubicin (DOX)

resistant human breast carcinoma tumor cell line MCF-7/DOX
is the biological activity of interest. MCF-7/DOX cells display
a classical multidrug resistance phenotype with P-gp expres-
sion and decreased drug accumulation relative to the parental
line.15,17 The criterion used for anti-MDR activity is expressed
as MDR ratio or MDR fold reversal. It is defined as IC50 of
DOX alone, divided by IC50 of DOX plus the modifying drug
at a drug subinhibitory concentration of eIC10 and is equiva-
lent to the increase in apparent potency of the cytotoxic agent
produced by the modifier. The log values of MDR ratios were
used in the CoMFA correlations as they are related to changes
in linear free energy.
Computational Approaches. All molecular modeling

calculations were performed on a Silicon Graphics workstation
using the SYBYL 6.1/6.2 molecular modeling software.25 The
molecular modeling and 3D QSAR techniques applied were
molecular mechanics (Tripos force field), quantum chemistry
(MOPAC: AM1, PM3), CoMFA, HINT (Hydropathic INTer-
action),26,27 and cross-validated R2-guided region selection (Q2-
GRS).28 MOPAC V6 was used as implemented in SYBYL.
CoMFA calculations were performed with the QSAR module
of SYBYL. HINT V 2.11 and Q2-GRS program were used as
imported into the SYBYL implementation of CoMFA.
Starting Geometries and Geometry Optimization of

3D Structures. The X-ray structures of the compounds taken
from the Cambridge crystallographic database29 were used as
starting conformations. Chlorpromazine (CPROMAZ refcode)
and prochlorperazine (PERAZ refcode) X-ray structures were
used to build, respectively, the promazine and perazine type
phenothiazine derivatives for which X-ray structures were not
available in the database. Local minimum conformers of trans-
and cis-flupentixol obtained from the previously performed
molecular modeling study20 were used to build the respective
trans and cis forms of the thioxanthene data set. Chlorimi-
pramine and quinacrine X-ray structures were also taken from
the Cambridge crystallographic database, refcodes CIMPRA
and QUIANC10, respectively, and imipramine was built from
chlorimipramine.
The starting structures were geometry optimized using the

Tripos force field (Powell method, no electrostatics and 0.05
kcal/mol Å energy gradient convergence criterion), keeping the
tricyclic ring system as an aggregate, and the final optimiza-
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tion was performed with a semiempirical molecular orbital
method. (According to our experience the energy minimization
with the Tripos force field leads to distortions from the X-ray
geometry for the tricyclic ring system, indicating that the
implemented force field parameters are not suitable for this
substructure.) To decide on the most suitable quantum
chemical optimization technique, we performed geometry
optimization (full optimization, normal convergence) of the
neutral forms of chlorpromazine and perphenazine with AM1
and PM3 semiempirical methods and compared the conforma-
tions and electrostatic fields. Both methods showed very
similar results (data not shown), and AM1 was finally chosen
as relevant for geometry optimization and charge calculations
of nitrogen containing structures.
The structures of the thioxanthenes were built from the

selected conformations of trans- and cis-flupentixol as defined
by an excellent agreement between NMR analysis and molec-
ular modeling results described in detail elsewhere.20

As the tertiary nitrogen in the aliphatic chain of the
catamphiphiles studied is mostly protonated at physiological
pH, their monoprotonated structures were also generated. All
sets of compounds (neutral and monoprotonated forms) were
finally optimized with the AM1 Hamiltonian setting “Precise”
convergence criterion.
Alignment of Molecules. The database alignment was

used for skeleton, and superimposing was used for shape
alignment. Trifluoperazine served as a template molecule for
the training set of phenothiazines and trans-flupentixol for the
remaining training sets.
CoMFA Specifications. CoMFA calculations were per-

formed with the following characteristics: 2 Å grid spacing; 4
Å extension of the region beyond the van der Waals volumes
of the molecules; sp3 carbon probe atom with +1 charge; a
distance dependent (1/r) dielectric constant. The following
standard CoMFA fields were calculated: steric (S), electro-
static (E), and both (B). The same grid was used for all fields.
In all calculations a field cutoff value of 30 kcal/mol with no
electrostatic interactions at bad steric contacts (drop electro-
statics within steric cutoff for each row) and σmin of 0.2 kcal/
mol were used.
The CoMFA QSAR equations were calculated by PLS leave-

one-out cross-validation procedure. The models were esti-
mated on the basis of the cross-validated R2, Q2

cv, the optimal
number of components extracted, Nopt, and the standard error
of prediction, SEPcv. For the models with the highest Q2

cv, the
leave-one-out procedure was repeatedly performed decreasing
the number of components and following the change in SEPcv.
The model with the minimum SEPcv was compared to that with
the optimal number of components, and the decrease in Q2

cv

was calculated. Thus, models with the optimal number of
components extracted and number of components correspond-
ing to the minimum SEPcv were used further to derive the PLS
non-cross-validated models characterized by the correlation
coefficient, R2, standard error of estimate, SEE, and F ratio.
The predictive R2, Q2

pr, was calculated for the test set
compounds using the equation: Q2

pr ) ∑(SD - PRESS)/SD
with SD ) ∑(Yact - Ymean)2 and PRESS ) ∑(Ypred - Yact)2, where
Yact and Ypred are the actual and predicted activities, respec-
tively, of the compounds in the test set and Ymean is the mean
activity of the training set compounds.30 The standard error
of prediction, SEPpr, was calculated by the equation: SEPpr )
(PRESS/n)1/2, where n is the number of compounds in the test
set. The actual versus predicted activities of the test com-
pounds were fitted by linear regression and the explained
variance R2, SEE, and F ratio were recorded.
HINT Specifications. The HINT program27 was used for

the calculation of molecular lipophilic fields. Two kinds of
hydrophobic fields were examined: hydrophobic/polar (H) and
hydrophobic only (Ho). Both fields were calculated without
cutoff. For every training set the same region as for the
respective standard CoMFA fields was used.
Q2-GRS Routine. Cross-validated R2-guided region selec-

tion28 divides the CoMFA region into 5 × 5 × 5 (125) smaller
regions and performs a CoMFA run on each of these with a

grid resolution of 1 Å. To allow comparison with the conven-
tional CoMFA procedure, σmin was set to 0.2 kcal/mol. All
subregions with a Q2

cv larger than 0.1 were merged to form
the final CoMFA region.
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